DESCRIPTION

C4622 Naval Brass is mostly used for machine hardware, screw machine products and valve stems. C4622 Naval Brass is great for hot forging, pressing and machining. With high ductility, C4622 Naval Brass has excellent electrical and thermal conductivity. C4622 Naval Brass has a good creep resistance and high impact strength.

CHEMICAL COMPOSITION

	Elements		Min (%)		Max (%)		
	Cu	T. Hall	61.00	S. HE.I.	Tilling by	64.00	
	Pb		5 J.		100	0.30	
blrg.	Sn	ALTERNATION AND ADDRESS OF THE PARTY OF THE	0.70		CINIS ME	1.50	
	Fe	No. of Physics	, ē,	METHIN .	WE ILL OF STATE	0.20	
	Zn	.5	all the	Rema	ainder	c grand	

MECHANICAL PROPERTIES ACCORDING TO BS287 (AS PER TEMPER M)

Range (Inch)	From	То	UTS Min (MPa)	PS Min	Elongation Min (%)	Hardness Min (HRB)	Hardness Max (HRB)
Round (Dia)	9 1.5	75.00	365.00	-	20.00	- Illie	612-y
Hex (A/F)	3.00	70.00	365.00	.5 - 4	20.00	685	-,
Square (A/F)	3.00	60.00	365.00	Elba - Thip	20.00		Land of the second
Rectangle (Thickness)	3.00	50.00	365.00	-6/2/2	20.00	- <u>-</u> -E/M22	

PHYSICAL PROPERTIES

	Melting Point - Liquidus°F	1650
1	Melting Point - Solidus°F	1630
	Densitylb/cu in. at 68°F	0.305
3	Specific Gravity	8.44
	Electrical Conductivity% IACS at 68°F	26
	Thermal ConductivityBtu/ sq ft/ ft hr/ °F at 68°F	67
	Coefficient of Thermal Expansion 68-57210 ⁻⁶ per °F (68 – 572°F)	11.8
	Specific Heat CapacityBtu/ lb /°F at 68°F	0.09
7	Modulus of Elasticity in Tensionksi	15000
	Modulus of Rigidityksi	5600

FABRICATION PROPERTIES

Technique	Suitability
Soldering	Excellent
Brazing	Good
Oxyacetylene Welding	Not Recommended
Gas Shielded Arc Welding	Not Recommended
Coated Metal Arc Welding	Not Recommended
Spot Weld	Not Recommended
Seam Weld	Not Recommended
Butt Weld	Fair
Capacity for Being Cold Worked	Poor
Capacity for Being Hot Formed	Good
Forgeability Rating	90
Machinability Rating	50
_D	

TYPICAL USES

- > Fasteners
- > Industrial
- > Marine